Segment trees are a unique application of trees that help to solve problems that involve many range queries over an array
Whenever you see problems that involve multiple range queries like finding the maximum across ranges, explore using segment trees
The fundamental idea of segment trees is that each leaf corresponds to an element in the array (by index) and each subsequent parent represents a range of that array, i..j. As a result, while segment trees can be represented as an actual tree, it can also just be represented directly using an array.
Implementation
For this implementation of segment trees, updates are relatively expensive because they have to traverse the entire tree to ensure that all nodes are updated accordingly. To optimize updates, you can look into lazy propagation on segment trees
Building
Build from bottom up using merge sort like algorithms
void build(int node, int start, int end)
{
if(start == end)
{
// Leaf node will have a single element
tree[node] = A[start];
}
else
{
int mid = (start + end) / 2;
// Recurse on the left child
build(2*node, start, mid);
// Recurse on the right child
build(2*node+1, mid+1, end);
// Internal node will have the sum of both of its children
tree[node] = tree[2*node] + tree[2*node+1];
}
}
Updating
void update(int node, int start, int end, int idx, int val)
{
if(start == end)
{
// Leaf node
A[idx] += val;
tree[node] += val;
}
else
{
int mid = (start + end) / 2;
if(start <= idx and idx <= mid)
{
// If idx is in the left child, recurse on the left child
update(2*node, start, mid, idx, val);
}
else
{
// if idx is in the right child, recurse on the right child
update(2*node+1, mid+1, end, idx, val);
}
// Internal node will have the sum of both of its children
tree[node] = tree[2*node] + tree[2*node+1];
}
}
Querying
When querying for a range, we're simply looking for the ranges (represented by our nodes) that fully encompass our search range
int query(int node, int start, int end, int l, int r)
{
if(r < start or end < l)
{
// range represented by a node is completely outside the given range
return 0;
}
if(l <= start and end <= r)
{
// range represented by a node is completely inside the given range
return tree[node];
}
// range represented by a node is partially inside and partially outside the given range
int mid = (start + end) / 2;
int p1 = query(2*node, start, mid, l, r);
int p2 = query(2*node+1, mid+1, end, l, r);
return (p1 + p2);
}